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In certain clustering tasks it is possible to obtain limited supervision in the form of

pairwise constraints, i.e., pairs of instances labeled as belonging to same or different

clusters. The resulting problem is known as semi-supervised clustering, an instance

of semi-supervised learning stemming from a traditional unsupervised learning set-

ting. Several algorithms exist for enhancing clustering quality by using supervision

in the form of constraints. These algorithms typically utilize the pairwise constraints

to either modify the clustering objective function or to learn the clustering distortion

measure. This chapter describes an approach that employs Hidden Markov Random

Fields (HMRFs) as a probabilistic generative model for semi-supervised clustering,

thereby providing a principled framework for incorporating constraint-based super-

vision into prototype-based clustering. The HMRF-based model allows the use of a

broad range of clustering distortion measures, including Bregman divergences (e.g.,

squared Euclidean distance, KL divergence) and directional distance measures (e.g.,

cosine distance), making it applicable to a number of domains. The model leads

to the HMRF-KMeans algorithm which minimizes an objective function derived

from the joint probability of the model, and allows unification of constraint-based

and distance-based semi-supervised clustering methods. Additionally, a two-phase

active learning algorithm for selecting informative pairwise constraints in a query-

driven framework is derived from the HMRF model, facilitating improved clustering

performance with relatively small amounts of supervision from the user.
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3.1 Introduction

This chapter focuses on semi-supervised clustering with constraints, the problem ofsemi-supervised

clustering with

constraints

partitioning a set of data points into a specified number of clusters when limited

supervision is provided in the form of pairwise constraints. While clustering is

traditionally considered to be a form of unsupervised learning since no class labels

are given, inclusion of pairwise constraints makes it a semi-supervised learning task,

where the performance of unsupervised clustering algorithms can be improved using

the limited training data.

Pairwise supervision is typically provided as must-link and cannot-link constraintsmust-link and

cannot-link

constraints

on data points: a must-link constraint indicates that both points in the pair should

be placed in the same cluster, while a cannot-link constraint indicates that two

points in the pair should belong to different clusters. Alternatively, must-link

and cannot-link constraints are sometimes called equivalence and non-equivalence

constraints respectively. Typically, the constraints are “soft”, that is, clusterings

that violate them are undesirable but not prohibited.

In certain applications, supervision in the form of class labels may be unavailable,

while pairwise constraints are easily obtained, creating the need for methods that

exploit such supervision. For example, complete class labels may be unknown in

the context of clustering for speaker identification in a conversation [Bar-Hillel

et al., 2003], or clustering GPS data for lane-finding [Wagstaff et al., 2001]. In some

domains, pairwise constraints occur naturally, e.g., the Database of Interacting

Proteins (DIP) data set in biology contains information about proteins co-occurring

in processes, which can be viewed as must-link constraints during clustering.

Moreover, in an interactive learning setting, a user who is not a domain expert can

sometimes provide feedback in the form of must-link and cannot-link constraints

more easily than class labels, since providing constraints does not require the user

to have significant prior knowledge about the categories in the dataset.

Proposed methods for semi-supervised clustering fall into two general categories

that we call constraint-based and distance-based. Constraint-based methods use theconstraint-based

and

distance-based

methods

provided supervision to guide the algorithm towards a data partitioning that avoids

violating the constraints [Demiriz et al., 1999, Wagstaff et al., 2001, Basu et al.,

2002]. In distance-based approaches, an existing clustering algorithm that uses a

particular distance function between points is employed; however, the distance

function is parameterized and the parameter values are learned to bring must-

linked points together and take cannot-linked points further apart [Bilenko and

Mooney, 2003, Cohn et al., 2003, Klein et al., 2002, Xing et al., 2003].

This chapter describes an approach to semi-supervised clustering based on Hid-

den Markov Random Fields (HMRFs) that combines the constraint-based and

distance-based approaches in a unified probabilistic model. The probabilistic for-

mulation leads to a clustering objective function derived from the joint probability

of observed data points, their cluster assignments, and generative model param-

eters. This objective function can be optimized using an EM-style clustering al-
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gorithm, HMRF-KMeans, that finds a local minimum of the objective function.

HMRF-KMeans can be used to perform semi-supervised clustering using a broad

class of distortion (distance) functions,1 namely Bregman divergences [Banerjee

et al., 2005b], which include a wide variety of useful distances, e.g., KL divergence,

squared Euclidean distance, I-divergence, and Itakuro-Saito distance. In a number

of applications, such as text clustering based on a vector-space model, a directional

distance measure based on the cosine of the angle between vectors is more ap-

propriate [Baeza-Yates and Ribeiro-Neto, 1999]. Clustering algorithms have been

developed that utilize distortion measures appropriate for directional data [Dhillon

and Modha, 2001, Banerjee et al., 2005a], and the HMRF-KMeans framework

naturally extends them.

A practical aspect of semi-supervised clustering with constraints is how maxi-

mally informative constraints can be acquired in a real-life setting, where a limited

set of queries can be made to a user in an interactive learning setting [McCallum

and Nigam, 1998]. In that case, fewer queries should be posed to the user to obtain

constraints that can significantly enhance the clustering accuracy. To this end, a

new method for active learning is presented—it selects good pairwise constraints for

semi-supervised clustering by asking queries to the user of the form “Are these two

examples in same or different classes?” leading to improved clustering performance.

3.2 HMRF Model for Semi-supervised Clustering

Partitional prototype-based clustering is the underlying unsupervised clustering

setting under consideration. In such a setting, a set of data points is partitioned

into a pre-specified number of clusters, where each cluster has a representative (or

“prototype”), so that a well-defined cost function, involving a distortion measure

between the points and the cluster representatives, is minimized. A well-known un-

supervised clustering algorithm that follows this framework is K-Means [MacQueen,

1967].

Our semi-supervised clustering model considers a sample of n data points X =problem setting

(x1, . . . , xn), each xi ∈ R
d being a d-dimensional vector, with xim representing

its m-th component. The model relies on a distortion measure dA used to compute

distance between points: dA : R
d×R

d → R, where A is the set of distortion measure

parameters. Supervision is provided as two sets of pairwise constraints: must-link

constraints CML = {(xi, xj)} and cannot-link constraints CCL = {(xi, xj)}, where

(xi, xj) ∈ CML implies that xi and xj are labeled as belonging to the same cluster,

while (xi, xj) ∈ CCL implies that xi and xj are labeled as belonging to different

clusters. The constraints may be accompanied by associated violation costs W ,

where wij represents the cost of violating the constraint between points xi and xj

1. In this chapter, “distance measure” is used synonymously with “distortion measure”:
both terms refer to the distance function used for clustering.
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if such a constraint exists, that is, either (xi, xj) ∈ CML or (xi, xj) ∈ CCL. The task

is to partition the datapoints X into K disjoint clusters (X1, . . . ,XK) so that the

total distortion between the points and the corresponding cluster representatives is

minimized according to the given distortion measure dA, while constraint violations

are kept to a minimum.

3.2.1 HMRF Model Components

The Hidden Markov Random Field (HMRF) probabilistic framework [Zhang et al.,

2001] for semi-supervised constrained clustering consists of the following compo-

nents:

An observable set X = (x1, . . . , xn) corresponding to the given data points X.

Note that we overload notation and use X to refer to both the given set of data

points and their corresponding random variables.

An unobservable (hidden) set Y = (y1, . . . , yn) corresponding to cluster assign-

ments of points in X. Each hidden variable yi encodes the cluster label of the point

xi and takes values from the set of cluster indices (1, . . . ,K).

An unobservable (hidden) set of generative model parameters Θ, which consists

of distortion measure parameters A and cluster representatives M = (µ1, . . . , µK):

Θ = {A,M}.

An observable set of constraint variables C = (c12, c13, . . . , cn−1,n). Each cij

is a tertiary variable taking on a value from the set (−1, 0, 1), where cij = 1

indicates that (xi, xj) ∈ CML, cij = −1 indicates that (xi, xj) ∈ CCL, and cij = 0

corresponds to pairs (xi, xj) that are not constrained.

Since constraints are fully observed and the described model does not attempt

to model them generatively, the joint probability of X, Y , and Θ is conditioned on

the constraints encoded by C.

Fig. 3.1 shows a simple example of an HMRF. X consists of five datapointsHMRF example

with corresponding variables (x1, . . . , x5) that have cluster labels Y = (y1, . . . , y5),

which may each take on values (1, 2, 3) denoting the three clusters. Three pairwise

constraints are provided: two must-link constraints (x1, x2) and (x1, x4), and one

cannot-link constraint (x2, x3). Corresponding constraint variables are c12 = 1,

c14 = 1, and c23 = −1; all other variables in C are set to zero. The task is to

partition the five points into three clusters. Fig. 3.1 demonstrates one possible

clustering configuration which does not violate any constraints. The must-linked

points x1, x2 and x4 belong to cluster 1; the point x3, which is cannot-linked with

x2, is assigned to cluster 2; x5, which is not involved in any constraints, belongs to

cluster 3.
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Figure 3.1 A Hidden Markov Random Field

3.2.2 Markov Random Field over Labels

Each hidden random variable yi ∈ Y representing the cluster label of xi ∈ X is

associated with a set of neighbors Ni. The set of neighbors is defined as all points

to which xi is must-linked or cannot-linked: Ni = {yj |(xi, xj) ∈ CML or (xi, xj) ∈

CCL}. The resulting random field defined over the hidden variables Y is a Markov

Random Field (MRF), where the conditional probability distribution over the

hidden variables obeys the Markov property:Markov field over

labels

∀i, P(yi|Y − {yi},Θ, C) = P(yi|Ni,Θ, C). (3.1)

Thus the conditional probability of yi for each xi, given the model parameters and

the set of constraints, depends only on the cluster labels of the observed variables

that are must-linked or cannot-linked to xi. Then, by the Hammersley-Clifford

theorem [Hammersley and Clifford, 1971], the prior probability of a particular label

configuration Y can be expressed as a Gibbs distribution [Geman and Geman,

1984], so that

P(Y |Θ, C) =
1

Z
exp (−v(Y )) =

1

Z
exp

(

−
∑

Ni∈N

vNi
(Y )

)

, (3.2)

where N is the set of all neighborhoods, Z is the partition function (normalizing

term), and v(Y ) is the overall label configuration potential function, which can

be decomposed into a sum of functions vNi
(Y ), each denoting the potential for
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Figure 3.2 Graphical plate model of variable dependence

every neighborhood Ni in the label configuration Y . Since the potentials for every

neighborhood are based on pairwise constraints in C (and model parameters Θ),

the label configuration can be further decomposed as:

P(Y |Θ, C) =
1

Z
exp



−
∑

i,j

v(i, j)



 , (3.3)

where each constraint potential function v(i, j) has the following form:constraint

potential function

v(i, j) =















wijfML(i, j) if cij = 1 and yi 6= yj

wijfCL(i, j) if cij = −1 and yi = yj

0 otherwise

(3.4)

The penalty functions fML and fCL encode the lowered probability of observing

configurations of Y where constraints encoded by C are violated. To this end,

function fML penalizes violated must-link constraints and function fCL penalizes

violated cannot-link constraints. These functions are chosen to correspond with the

distortion measure by employing same model parameters Θ, and will be described

in detail in Section 3.3. Overall, this formulation for observing the label assignment

Y results in higher probabilities being assigned to configurations in which cluster

assignments do not violate the provided constraints.

3.2.3 Joint Probability in HMRF

The joint probability of X, Y , and Θ, given C, in the described HMRF model can

be factorized as follows:

P(X,Y,Θ|C) = P(Θ|C) P(Y |Θ, C) P(X|Y,Θ, C) (3.5)

The graphical plate model [Buntine, 1994] of the dependence between the random

variables in the HMRF is shown in Figure 3.2, where the unshaded nodes representgraphical plate

model
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the hidden variables, the shaded nodes are the observed variables, the directed links

show dependencies between the variables, while the lack of an edge between two

variables implies conditional independence. The prior probability of Θ is assumed

to be independent of C. The probability of observing the label configuration Y

depends on the constraints C and current generative model parameters Θ. Observed

datapoints corresponding to variables X are generated using the model parameters

Θ based on cluster labels Y , independent of the constraints C. The variables X

are assumed to be mutually independent: each xi is generated individually from

a conditional probability distribution P(x|y,Θ). Then, the conditional probability

P(X|Y,Θ, C) can be written as:

P(X|Y,Θ, C) = P(X|Y,Θ) =

n
∏

i=1

p(xi|yi,Θ), (3.6)

where p(·|yi,Θ) is the parameterized probability density function for the yi-th

cluster, from which xi is generated. This probability density is related to the

clustering distortion measure dA, as described below in Section 3.2.4.

From (3.3), (3.5), and (3.6), it follows that maximizing the joint probability on

the HMRF is equivalent to maximizing:

P(X,Y,Θ|C) = P(Θ)

(

1

Z
exp



−
∑

cij∈C

v(i, j)





)( n
∏

i=1

p(xi|yi,Θ)

)

(3.7)

The joint probability in (3.7) has 3 factors. The first factor describes a proba-joint probability

factorization bility distribution over the model parameters preventing them from converging

to degenerate values, thereby providing regularization. The second factor is the

conditional probability of observing a particular label configuration given the pro-

vided constraints, effectively assigning a higher probability to configurations where

the cluster assignments do not violate the constraints. Finally, the third factor is

the conditional probability of generating the observed data points given the labels

and the parameters: if maximum likelihood (ML) estimation was performed on the

HMRF, the goal would have been to maximize this term in isolation.

Overall, maximizing the joint HMRF probability in (3.7) is equivalent to jointly

maximizing the likehood of generating datapoints from the model and the probabil-

ity of label assignments that respect the constraints, while regularizing the model

parameters.

3.2.4 Semi-supervised Clustering Objective Function on HMRF

Formulation (3.7) suggests a general framework for incorporating constraints into

clustering. The choice of the conditional probability p(x|y,Θ) in a particular

instantiation of the framework is directly connected to the choice of the distortion

measure appropriate for the clustering task.

When considering the conditional probability p(xi|yi,Θ)—the probability ofgenerative

probability for X
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generating a datapoint xi from the yi-th cluster—our attention is restricted to

probability densities from the exponential family, where the expectation parameter

corresponding to the yi-th cluster is µyi
, the mean of the points of that cluster.

Using this assumption and the bijection between regular exponential distributions

and regular Bregman divergences [Banerjee et al., 2005b], the conditional density

for observed data can be represented as:

p(xi|yi,Θ) =
1

ZΘ
exp

(

−dA(xi, µh)
)

, (3.8)

where dA(xi, µyi
) is the Bregman divergence between xi and µyi

, corresponding to

the exponential density p, and ZΘ is the normalizer.2 Different clustering models

fall into this exponential form:

If xi and µyi
are vectors in Euclidean space, and dA is the square of the L2

distance parameterized by a positive semidefinite weight matrix A (dA(xi, µyi
) =

‖xi − µyi
‖
2
A), then the cluster conditional probability is a Gaussian with covariance

encoded by A−1 [Kearns et al., 1997];

If xi and µyi
are probability distributions and dA is the KL-divergence (dA(xi, µyi

) =
∑d

m=1 xim log xim

µyim
), then the cluster conditional probability is a multinomial dis-

tribution [Dhillon and Guan, 2003].

The relation in (3.8) holds even if dA is not a Bregman divergence but a directional

distance measure like cosine distance. For example, if xi and µyi
are vectors of

unit length and dA is one minus the dot-product of the vectors
(

dA(xi, µyi
) =

1 −
Pd

m=1
ximµyim

‖xi‖‖µyi‖

)

, then the cluster conditional probability is a von-Mises Fisher

(vMF) distribution with unit concentration parameter [Banerjee et al., 2005a],

which is essentially the spherical analog of a Gaussian. The connection between

specific distortion measures studied in this paper and their corresponding cluster

conditional probabilities is discussed in more detail in Section 3.3.3.

Putting (3.8) into (3.7) and taking logarithms gives the following cluster objective

function, minimizing which is equivalent to maximizing the joint probability over

the HMRF in (3.7):

Jobj =
∑

xi∈X

dA(xi, µyi
) +

∑

cij∈C

v(i, j) − log P(Θ) + log Z + n log ZΘ (3.9)

Thus, the task is to minimize Jobj over the hidden variables Y and Θ (note that

given Y , the means M = (µ1, . . . , µK) are uniquely determined).

2. When A = I (identity matrix), the bijection result [Banerjee et al., 2005b] ensures that
the normalizer ZΘ is 1. In general, there are additional multiplicative terms that depend
only on x, and hence can be safely ignored for parameter estimation purposes.
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3.3 HMRF-KMeans Algorithm

Since the cluster assignments and the generative model parameters are unknown in

a clustering setting, minimizing (3.9) is an “incomplete-data problem”. A popular

solution technique for such problems the is Expectation Maximization (EM) algo-

rithm [Dempster et al., 1977]. The K-Means algorithm [MacQueen, 1967] is known

to be equivalent to the EM algorithm with hard clustering assignments, under cer-

tain assumptions [Kearns et al., 1997, Basu et al., 2002, Banerjee et al., 2005b]. This

section describes a K-Means-type hard partitional clustering algorithm, HMRF-

KMeans, that finds a local minimum of the semi-supervised clustering objective

function Jobj in (3.9).

3.3.1 Normalizing Component Estimation

Before describing the details of the clustering algorithm, it is important to consider

the normalizing components: the MRF partition function log Z and the distortion

function normalizer log ZΘ in (3.9). Estimation of the partition function cannot

be performed in closed form for most non-trivial dependency structures, and

approximate inference methods must be employed for computing it [Wainwright

and Jordan, 2003].

Estimation of the distortion normalizer log ZΘ depends on the distortion measurenormalizer

approximation dA used by the model. This chapter considers three parameterized distortion mea-

sures: parameterized squared Euclidean distance, parameterized cosine distance,

and parameterized Kullback-Leibler (KL) divergence. For Euclidean distance, ZΘ

can be estimated in closed form, and this estimation is performed while minimizing

the clustering objective function Jobj in (3.9). For the other distortion measures,

estimating the distortion normalizer ZΘ cannot be performed in closed form, and

approximate inference must be again used [Banerjee et al., 2005a].

Since approximate inference methods can be very expensive computationally,

two simplifying assumptions can be made: the MRF partition function may be

considered to be constant in the clustering process, and the distortion normalizer

may be assumed constant for all distortion measures that do not provide its closed-

form estimate. With these assumptions, the objective function Jobj in (3.9) no longer

exactly corresponds to a joint probability on a HMRF. However, minimizing this

simplified objective has been shown to work well empirically [Bilenko et al., 2004,

Basu et al., 2004b]. However, if in some application it is important to preserve the

semantics of the underlying joint probability model, then the normalizers Z and

ZΘ must be estimated by approximate inference methods.
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3.3.2 Parameter Priors

Following the definition of Θ in Section 3.2.1, the prior term log P(Θ) in (3.9) and

the subsequent equations can be factored as follows:

log P(Θ) = log
(

P(A)P(M)
)

= log P(A) + PM

where the distortion parameters A are assumed to be independant of the cluster

centroids M = (µ1, . . . , µK), and uniform priors are considered over the cluster

centroids (leading to the constant term PM ). For different distortion measures,

parameter values may exist that lead to degenerate solutions of the optimization

problem. For example, for squared Euclidean distance, the zero matrix A = 0 is

one such solution. To prevent degenerate solutions, P(A) is used to regularize the

parameter values using a prior distribution.

If the standard Gaussian prior was used on the parameters of the distortion

function, it would allow the parameters to take negative values. Since it is desirableRayleigh prior

to constrain the parameter values to be non-negative, it is more appropriate to use

the Rayleigh distribution [Papoulis and Pillai, 2001]. Assuming independence of

the parameters aij ∈ A, the prior term based on the Rayleigh distribution is the

following:

P(A) =
∏

aij∈A

aij exp
(

−
a2

ij

s2

)

s2
(3.10)

where s is the width parameter.

3.3.3 Adaptive Distortion Measures

Selecting an appropriate distortion measure dA for a clustering task typically

involves knowledge about properties of the particular domain and dataset. For

example, squared Euclidean distance is most appropriate for low-dimensional data

with distribution close to Gaussian, while cosine distance best captures distance

between data described by vectors in high-dimensional space where differences in

angles are important but vector lengths are not.

Distortion measures from two families are considered in this chapter: Bregman

divergences [Banerjee et al., 2005b], which include parameterized squared Euclideandistortion

measure selection distance and Kullback-Leibler divergence, and distortion measures based on direc-

tional similarity functions, which include cosine similarity and Pearson’s correla-

tion [Mardia and Jupp, 2000]. The distortion measure for directional functions is

chosen to be the directional similarity measure subtracted from a constant suffi-

ciently large so that the resulting value is non-negative. For both Bregman diver-

gences and cosine distance, there exist efficient K-Means-type iterative relocation

algorithms that minimize the corresponding clustering objective [Banerjee et al.,

2005a,b], which the HMRF-KMeans naturally extends to incorporate pairwise
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supervision.

For many realistic datasets, off-the-shelf distortion measures may fail to capture

the correct notion of similarity in a clustering setting. While some unsupervised

measures like squared Euclidean distance and Pearson’s distance attempt to cor-

rect distortion estimates using the global mean and variance of the dataset, these

measures may still fail to estimate distances accurately if the attributes’ true contri-

butions to the distance is not correlated with their variance. Several semi-supervised

clustering approaches exist that incorporate adaptive distortion measures, includ-

ing parameterizations of Jensen-Shannon divergence [Cohn et al., 2003] and squared

Euclidean distance [Bar-Hillel et al., 2003, Xing et al., 2003]. However, these tech-

niques use only constraints to learn the distortion measure parameters and exclude

unlabeled data from the parameter learning step, as well as separate the parameter

learning step from the clustering process.

Going a step further, the HMRF model provides an integrated framework

which incorporates both learning the distortion measure parameters and constraint-adaptive

distortion

measure

sensitive cluster assignments. In HMRF-KMeans, the parameters of the distortion

measure are learned iteratively as the clustering progresses, utilizing both unlabeled

data and pairwise constraints. The parameters are modified to decrease the param-

eterized distance between violated must-linked constraints and increase it between

violated cannot-link constraints, while allowing constraint violations if they accom-

pany a more cohesive clustering.

This section presents three examples of distortion functions and their parameteri-

zations for use with HMRF-KMeans: squared Euclidean distance, cosine distance

and KL divergence. Through parameterization, each of these functions becomes

adaptive in a semi-supervised clustering setting, permitting clusters of varying

shapes.

Once a distortion measure is chosen for a given domain, the functions fML

and fCL, introduced in Section 3.2.2 for penalizing must-link and cannot-linkconstraint

potential function constraint violations respectively, must be defined. These functions typically follow

a functional form identical or similar to the corresponding distortion measure, and

are chosen as follows:

fML(i, j) = ϕ(i, j) (3.11)

fCL(i, j) = ϕmax − ϕ(i, j) (3.12)

where ϕ : X × X → R
+ is a non-negative function that penalizes constraint

violation, and ϕmax is an upper bound on the maximum value of ϕ over any pair of

points in the dataset; examples of such bounds for specific distortion functions are

shown below. The function ϕ is chosen to correlate with the distortion measure,

assigning higher penalties to violations of must-link constraints between points that

are distant with respect to the current parameter values of the distortion measure.

Conversely, penalties for violated cannot-link constraints are higher for points that

have low distance between them. With this formulation of the penalty functions,
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constraint violations lead to changes in the distortion measure parameters that

attempt to mend the violations. The ϕ function for different clustering distortion

measures is discussed in the following sections.

Accordingly, the potential function v(i, j) in (3.4) becomes:

v(i, j) =















wijϕ(xi, xj) if cij = 1 and yi 6= yj

wij

(

ϕmax − ϕ(xi, xj)
)

if cij = −1 and yi = yj

0 otherwise

, (3.13)

and the objective function for semi-supervised clustering in (3.9) can be expressed

as:

Jobj =
∑

xi∈X

dA(xi, µ(i)) +
∑

(xi,xj)∈CML

s.t. yi 6=yj

wijϕ(xi, xj)

+
∑

(xi,xj)∈CCL

s.t. yi=yj

wij

(

ϕmax − ϕ(xi, xj)
)

− log P(A) + n log ZΘ (3.14)

Note that as discussed in Section 3.3.1, the MRF partition function term log Z has

been dropped from the objective function.

3.3.3.1 Parameterized Squared Euclidean Distance

Squared Euclidean distance is parameterized using a symmetric positive-definite

matrix A as follows:

deucA
(xi, xj) = ‖xi − xj‖

2
A = (xi − xj)

T A(xi − xj). (3.15)

This form of the parameterized squared Euclidean distance is equivalent to Maha-

lanobis distance with an arbitrary positive semidefinite weight matrix A in place

of the inverse covariance matrix, and it was previously used for semi-supervised

clustering by [Xing et al., 2003] and [Bar-Hillel et al., 2003]. Such formulation can

also be viewed as a projection of every instance x onto a space spanned by A1/2:

x→A1/2x.

To use parameterized squared Euclidean distance as the adaptive distortion mea-

sure for clustering, the ϕ function that penalizes constraint violations is defined

as ϕ(xi, xj) = deucA
(xi, xj). One possible initialization of the upper bound for

cannot-link penalties is ϕmax
eucA

=
∑

(xi,xj)∈CCL
deucA

(xi, xj), which guarantees that

the penalty is always positive. Using these definitions along with (3.14), the fol-

lowing objective function is obtained for semi-supervised clustering with adaptive

squared Euclidean distance:
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JeucA
=

∑

xi∈X

deucA
(xi, µ(i)) +

∑

(xi,xj)∈CML

s.t. yi 6=yj

wijdeucA
(xi, xj)

+
∑

(xi,xj)∈CCL

s.t. yi=yj

wij

(

ϕmax
eucA

− deucA
(xi, xj)

)

− log P(A) − n log det(A)

(3.16)

Note that as discussed in Section 3.3.1, the log ZΘ term is computable in

closed-form for a Gaussian distribution with covariance matrix A−1, which is the

underlying cluster conditional probability distribution for parameterized squared

Euclidean distance. The log det(A) term (3.16) corresponds to the log ZΘ term in

this case.

3.3.3.2 Parameterized Cosine Distance

Cosine distance can be parameterized using a symmetric positive-definite matrix

A, which leads to the following distortion measure:

dcosA
(xi, xj) = 1 −

xT
i Axj

‖xi‖A‖xj‖A
. (3.17)

Because for realistic high-dimensional domains computing the full matrix A would

be computationally expensive, a diagonal matrix is considered in this case, such

that a = diag(A) is a vector of positive weights.

To use parameterized squared Euclidean distance as the adaptive distortion

measure for clustering, the ϕ function is defined as ϕ(xi, xj) = dcosA
(xi, xj). Using

this definition along with (3.14), and setting ϕmax = 1 as an upper bound on

ϕ(xi, xj), the following objective function is obtained for semi-supervised clustering

with adaptive cosine distance:

JcosA
=

∑

xi∈X

dcosA
(xi, µ(i)) +

∑

(xi,xj)∈CML

s.t. yi 6=yj

wijdcosA
(xi, xj)

+
∑

(xi,xj)∈CCL

s.t. yi=yj

wij

(

1 − dcosA
(xi, xj)

)

− log P(A) (3.18)

Note that as discussed in Section 3.3.1, it is difficult to compute the log ZΘ term

in closed-form for parameterized cosine distance. So, the simplifying assumption is

made that log ZΘ is constant during the clustering process and the normalizer term

is dropped from (3.18).
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3.3.3.3 Parameterized KL-Divergence

In certain domains, data is described by probability distributions, e.g. text docu-

ments can be represented as probability distributions over words generated by a

multinomial model [Pereira et al., 1993]. KL-divergence is a widely used distance

measure for such data: dKL(xi, xj) =
∑d

m=1 xim log xim

xjm
, where xi and xj are prob-

ability distributions over d events:
∑d

m=1 xim =
∑d

m=1 xjm = 1. In previous work,

Cohn et al. [2003] parameterized KL-divergence by multiplying the m-th component

by a weight γm: d′KL(xi, xj) =
∑d

m=1 γmxim log xim

xjm
.

In our framework, KL distance is parameterized using a diagonal matrix A,

where a = diag(A) is a vector of positive weights. This parameterization of KLI-divergence

by A converts it to I-divergence, a function that also belongs to the class of Breg-

man divergences [Banerjee et al., 2005b]. I-divergence has the form: dI(xi, xj) =
∑d

m=1 xim log xim

xjm
−

∑d
m=1(xim − xjm), where xi and xj no longer need to be

probability distributions but can be any non-negative vectors.3 The following pa-

rameterization of KL is used:

dIA
(xi, xj) =

d
∑

m=1

amxim log
xim

xjm
−

d
∑

m=1

am(xim − xjm), (3.19)

which can be interpreted as scaling every component of the original probability

distribution by a weight contained in the corresponding component of A, and then

taking I-divergence between the transformed distributions.

For every distortion measure, the clustering framework described in Section 3.2.4

requires defining an appropriate constraint potential function that is symmetric,

since the constraint pairs are unordered. To meet this requirement, a sum of

weighted I-divergences from xi and xj to the mean vector
xi+xj

2 is used. This

parameterized I-divergence to the mean, dIMA
, is analogous to Jensen-Shannon

divergence [Cover and Thomas, 1991], the symmetric KL-divergence to the mean,

and is defined as follows:

dIMA
(xi, xj) =

d
∑

m=1

am

(

xim log
2xim

xim + xjm
+ xjm log

2xjm

xim + xjm

)

. (3.20)

To use parameterized squared Euclidean distance as the adaptive distortion

measure for clustering, the ϕ function is defined as ϕ(xi, xj) = dIMA
(xi, xj). Using

this definition along with (3.14), the following objective function is obtained for

semi-supervised clustering with adaptive KL distance:

3. For probability distributions, I-divergence and KL-divergence are equivalent.
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JIA
=

∑

xi∈X

dIA
(xi, µ(i)) +

∑

(xi,xj)∈CML

s.t. yi 6=yj

wijdIMA
(xi, xj)

+
∑

(xi,xj)∈CCL

s.t. yi=yj

wij

(

dmax
IMA

− dIMA
(xi, xj)

)

− log P(A) (3.21)

The upper bound dmax
IMA

can be initialized as dmax
IMA

=
∑d

m=1 am, which follows

from the fact that unweighted Jensen-Shannon divergence is bounded above by

1 [Lin, 1991].

Note that as discussed in Section 3.3.1, it is difficult to compute the log ZΘ term in

closed-form for parameterized KL distance. So, analogously to the parameterized

cosine distance case, the simplifying assumption is made that log ZΘ is constant

during the clustering process and that term is dropped from (3.21).

3.3.4 EM Framework

As discussed earlier in this section, Jobj can be minimized by a K-Means-type

iterative algorithm HMRF-KMeans. The outline of the algorithm is presented

in Fig. 3.3. The basic idea of HMRF-KMeans is as follows: the constraints are

used to get a good initialization of the clustering. Then in the E-step, given

the current cluster representatives, every data point is re-assigned to the cluster

which minimizes its contribution to Jobj. In the M-step, the cluster representatives

M = (µ1, . . . , µK) are re-estimated from the cluster assignments to minimize Jobj

for the current assignment. The clustering distortion measure dA is subsequently

updated in the M-step to reduce the objective function by modifying the parameters

A of the distortion measure.

Note that this corresponds to the generalized EM algorithm [Neal and Hinton,generalized EM

1998, Dempster et al., 1977], where the objective function is reduced but not

necessarily minimized in the M-step. Effectively, the E-step minimizes Jobj over

cluster assignments Y , the M-step (A) minimizes Jobj over cluster representatives

M , and the M-step (B) reduces Jobj over the parameters A of the distortion measure

dA. The E-step and the M-step are repeated till a specified convergence criterion is

reached. The specific details of the E-step and M-step are discussed in the following

sections.

3.3.5 Initialization

Good initial centroids are essential for the success of partitional clustering algo-

rithms such as K-Means. Good centroids are inferred from both the constraints

and unlabeled data during initialization. For this, a two stage initialization process

is used.



30 Probabilistic Semi-Supervised Clustering with ConstraintsAlgorithm: HMRF-KMeansInput: Set of data points X = (x1; : : : ; xn), number of 
lusters K, set of
onstraints C, 
onstraint violation 
osts W , distortion measure D.Output: Disjoint K-partitioning (X1; : : : ; XK) of X su
h that obje
tivefun
tion Jobj in Eqn. (3.9) is (lo
ally) minimized.Method:1. Initialize the K 
lusters 
entroids M (0) = (�(0)1 ; : : : ; �(0)K ), set t  02. Repeat until 
onvergen
e2a. E-step: Given 
entroids M (t) and distortion parameters A(t),re-assign 
luster labels Y (t+1) = (y(t+1)1 ; : : : ; y(t+1)n ) on X to minimize Jobj.2b. M-step(A): Given 
luster labels Y (t+1) and distortion parameters A(t+1),re-
al
ulate 
entroids M (t+1) = (�(t+1)1 ; : : : ; �(t+1)K ) to minimize Jobj.2
. M-step(B): Given 
luster labels Y (t+1) and 
entroids M (t+1),re-estimate parameters A(t+1) of the distortion measure to redu
e Jobj.2d. t  t+1
Figure 3.3 HMRF-KMeans algorithm

Neighborhood inference: At first, the transitive closure of the must-link

constraints is taken to get connected components consisting of points connected

by must-links. Let there be λ connected components, which are used to create λ

neighborhoods. These correspond to the must-link neighborhoods in the MRF over

the hidden cluster variables.

Cluster selection: The λ neighborhood sets produced in the first stage are used

to initialize the HMRF-Means algorithm. If λ = K, λ cluster centers are initialized

with the centroids of all the λ neighborhood sets. If λ < K, λ clusters are initialized

from the neighborhoods, and the remaining K−λ clusters are initialized with points

obtained by random perturbations of the global centroid of X. If λ > K, a weighted

variant of farthest-first traversal [Hochbaum and Shmoys, 1985] is applied to the

centroids of the λ neighborhoods, where the weight of each centroid is proportional

to the size of the corresponding neighborhood. Weighted farthest-first traversal

selects neighborhoods that are relatively far apart as well as large in size, and

the chosen neighborhoods are set as the K initial cluster centroids for HMRF-

KMeans.

Overall, this two-stage initialization procedure is able to take into account both

unlabeled and labeled data to obtain cluster representatives that provide a good

initial partitioning of the dataset.

3.3.6 E-step

In the E-step, assignments of data points to clusters are updated using the current

estimates of the cluster representatives. In the general unsupervised K-Means

algorithm, there is no interaction between the cluster labels, and the E-step is

a simple assignment of every point to the cluster representative that is nearest to

it according to the clustering distortion measure. In contrast, the HMRF model
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incorporates interaction between the cluster labels defined by the random field

over the hidden variables. As a result, computing the assignment of data points to

cluster representatives to find the global minimum of the objective function, given

the cluster centroids, is NP-hard in any non-trivial HMRF model, similarly to other

graphical models such as MRFs and belief networks [Roth, 1996].

There exist several techniques for computing cluster assignments that approx-

imate the optimal solution in this framework, e.g., iterated conditional modesgreedy ICM

assignment (ICM) [Besag, 1986, Zhang et al., 2001], belief propagation [Pearl, 1988, Segal

et al., 2003], and linear programming relaxation [Kleinberg and Tardos, 1999]. ICM

is a greedy strategy that sequentially updates the cluster assignment of each point,

keeping the assignments for the other points fixed. In many settings it has compa-

rable performance to more expensive global approximation techniques, but is com-

putationally more efficient; it has been compared with several other approaches

by Bilenko and Basu [2004], while in more recent work Lange et al. [2005] have

described an alternative efficient method based on the mean-field approximation.

ICM performs sequential cluster assignment for all the points in random order. Each

point xi is assigned to the cluster representative µh that minimizes the point’s con-

tribution to the objective function Jobj(xi, µh):

Jobj(xi, µh) = dA(xi, µh) +
∑

(xi,xj)∈Ci
ML

s.t. yi 6=yj

wijϕ(xi, xj)

+
∑

(xi,xj)∈Ci
CL

s.t. yi=yj

wij

(

ϕmax − ϕ(xi, xj)
)

− log P(A), (3.22)

where Ci
ML and Ci

CL are the subsets of CML and CCL respectively in which xi

appears in the constraints. The optimal assignment for every point minimizes the

distortion between the point and its cluster representative (first term of Jobj) along

with incurring a minimal penalty for constraint violations caused by this assignment

(second and third terms of Jobj). After all points are assigned, they are randomly

re-ordered, and the assignment process is repeated. This process proceeds until no

point changes its cluster assignment between two successive iterations.

Overall, the assignment of points to clusters incorporates pairwise supervision by

discouraging constraint violations proportionally to their severity, which guides the

algorithm towards a desirable partitioning of the data.

3.3.7 M-step

The M-step of the algorithm consists of two parts: centroid re-estimation and

distortion measure parameter update.
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3.3.7.1 M-Step (A): Centroid Re-estimation

In the first part of the M-step, the cluster centroids M are re-estimated from points

currently assigned to them, to decrease the objective function Jobj in (3.9). For

Bregman divergences and cosine distance, the cluster representative calculated in

the M-step of the EM algorithm is equivalent to the expectation value over the

points in that cluster, which is equal to their arithmetic mean [Banerjee et al.,

2005a,b]. Additionally, it has been experimentally demonstrated that for clustering

with distribution-based measures, e.g., KL divergence, smoothing cluster represen-

tatives by a prior using a deterministic annealing schedule leads to considerable

improvements [Dhillon and Guan, 2003]. With smoothing controlled by a positive

parameter α, each cluster representative µh is estimated as follows when dIA
is the

distortion measure:

µ
(IA)
h =

1

1 + α

(

∑

xi∈Xh
xi

|Xh|
+

α

n
1

)

(3.23)

For directional measures, each cluster representative is the arithmetic mean

projected onto unit sphere [Banerjee et al., 2005a]. Taking the distortion parameters

into account, centroids are estimated as follows when dcosA
is the distortion measure:

µ
(cosA)
h

‖µ
(cosA)
h ‖A

=

∑

xi∈Xh
xi

‖
∑

xi∈Xh
xi‖A

(3.24)

3.3.7.2 M-Step (B): Update of Distortion Parameters

In the second part of the M-step, the parameters of the parameterized distortion

measure are updated to decrease the objective function. In general, for parameter-

ized Bregman divergences or directional distances with general parameter priors,

it is difficult to attain a closed-form update for the parameters of the distortion

measure that can minimize the objective function.4 Gradient descent provides an

alternative avenue for learning the distortion measure parameters.

For squared Euclidean distance, a full parameter matrix A is updated during

gradient descent using the rule: A = A + η
∂JeucA

∂A (where η is the learning rate).gradient update

for full A Using (3.16),
∂JeucA

∂A can be expressed as:

4. For the specific case of parameterized squared Euclidean distance, a closed-form update
of the parameters can be obtained [Bilenko et al., 2004].
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∂JeucA

∂A
=

∑

xi∈X

∂deucA
(xi, µ(i))

∂A
+

∑

(xi,xj)∈CML

s.t. yi 6=yj

wij
∂deucA

(xi, xj)

∂A

+
∑

(xi,xj)∈CCL

s.t. yi=yj

wij

[

∂ϕmax
eucA

∂A
−

∂deucA
(xi, xj)

∂A

]

−
∂ log P(A)

∂A
− n

∂ log det(A)

∂A
.

(3.25)

The gradient of the parameterized squared Euclidean distance is given by:

∂deucA
(xi, xj)

∂A
= (xi − xj)(xi − xj)

T

The derivative of the upper bound ϕmax
eucA

is
∂ϕmax

eucA

∂A =
∑

(xi,xj)∈CCL
(xi −xj)(xi −

xj)
T if ϕmax

eucA
is computed as described in Section 3.3.3.1.5

When Rayleigh priors are used on the set of parameters A, the partial derivative

of the log-prior with respect to every individual parameter am ∈ A, ∂ log P(A)
∂am

, is

given by:

∂ log P(A)

∂am
=

1

am
−

am

s2
(3.26)

The gradient of the distortion normalizer log det(A) term is as follows:

∂ log det(A)

∂A
= 2A−1 − diag(A−1). (3.27)

For parameterized cosine distance and KL divergence, a diagonal parameter

matrix A is considered, where a = diag(A) is a vector of positive weights. Duringgradient update

for diagonal A gradient descent, each weight am is individually updated as: am = am + η
∂Jobj

∂am
(η

is the learning rate). Using (3.14),
∂Jobj

∂am
can be expressed as:

∂Jobj

∂am
=

∑

xi∈X

∂dA(xi, µ(i))

∂am
+

∑

(xi,xj)∈CML

s.t. yi 6=yj

wij
∂ϕ(xi, xj)

∂am

+
∑

(xi,xj)∈CCL

s.t. yi=yj

wij

[

∂ϕmax

∂am
−

∂ϕ(xi, xj)

∂am

]

−
∂ log P(A)

∂am
(3.28)

5. In practice, one can initialize ϕmax
eucA

with a sufficiently large constant, which would
make its derivative zero. Accordingly, an extra condition must be then inserted into
the algorithm to guarantee that penalties for violated cannot-link constraints are never
negative, in which case the constant must be increased.
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Calculation of the gradient
∂Jobj

∂am
for cosine distance and KL divergence, which

are parameterized by a diagonal matrix A, needs the gradients of the corresponding

distortion measures and constraint potential functions, which are:

∂dcosA
(xi, xj)

∂am
=

ximxjm‖xi‖A‖xj‖A − xT
i Axj

x2
im‖xj‖

2
A+x2

jm‖xi‖
2
A

2‖xi‖A‖xj‖A

‖xi‖2
A‖xj‖2

A

,

∂dIA
(xi, xj)

∂am
= xim log

xim

xjm
− (xim − xjm),

∂dIMA
(xi, xj)

∂am
= xim log

2xim

xim + xjm
+ xjm log

2xjm

xim + xjm
, (3.29)

while the gradient of the upper bound ∂ϕmax

∂am
is 0 for parameterized cosine and 1 for

parameterized KL divergence, as follows from the expressions for these constants

in Sections 3.3.3.2 and 3.3.3.3.

Overall, the distance learning step results in modifying the distortion measure

so that data points in violated must-link constraints are brought closer together,

while points in violated cannot-link constraints are pulled apart. This process leads

to a transformed data space that facilitates partitioning of the unlabeled data,

by attempting to mend the constraint violations as well as reflecting the natural

variance in the data. See chapters 14-16 for several alternative techniques that

change the data representation leading to better estimates of similarity between

data points.

3.3.8 Convergence of HMRF-KMeans

The HMRF-KMeans algorithm alternates between updating the assignment of

points to clusters, and updating the parameters. Since all updates ensure a de-

crease in the objective function, each iteration of HRMF-KMeans monotonically

decreases the objective function. Let us inspect each step in the update to ensure

that this is indeed the case.

For analyzing the cluster assignment step, let us consider (3.14). Each point xi

moves to a new cluster h only if the following component, contributed by the point

xi, is decreased with the move:

dA(xi, µ(i))+
∑

(xi,xj)∈Ci
ML

s.t. yi 6=yj

wijϕ(xi, xj)+
∑

(xi,xj)∈Ci
CL

s.t. yi=yj

wij

(

ϕmax−ϕ(xi, xj)
)

−log P(A).

Given a set of centroids and distortion parameters, the new cluster assignment of

points will decrease Jobj or keep it unchanged.

For analyzing the centroid re-estimation step, let us consider an equivalent form

of (3.14):



3.4 Active Learning for Constraint Acquisition 35

Jobj =

K
∑

h=1

∑

xi∈Xh

dA(xi, µh) +
∑

(xi,xj)∈Ci
ML

s.t. yi 6=yj

wijϕ(xi, xj)

+
∑

(xi,xj)∈Ci
CL

s.t. yi=yj

wij

(

ϕmax − ϕ(xi, xj)
)

− log P(A), (3.30)

Each cluster centroid µh is re-estimated by taking the mean of the points in the

partition Xh, which minimizes the component
∑

xi∈Xh
dA(xi, µh) of Jobj in (3.30)

contributed by the partition Xh. The constraint potential and the prior term in

the objective function do not take a part in centroid re-estimation, because they

are not explicit functions of the centroid. So, given the cluster assignments and the

distortion parameters, Jobj will decrease or remain the same in this step.

For the parameter estimation step, the gradient-descent update of the parameters

in M-step (B) decreases Jobj or keeps it unchanged. Hence the objective function

decreases after every cluster assignment, centroid re-estimation and parameter

re-estimation step. Now, note that the objective function is bounded below by

a constant: being the negative log-likelihood of a probabilistic model with the

normalizer terms, Jobj is bounded below by zero. Even without the normalizers,

the objective function is bounded below by zero, since the distortion and potential

terms are non-negative due to the fact that A is positive definite. Since Jobj is

bounded below, and HMRF-KMeans results in a decreasing sequence of objective

function values, the value sequence must have a limit. The limit in this case will

be a fixed point of Jobj since neither updating the assignments or the parameters

can further decrease the value of the objective function. As a result, the HMRF-

KMeans algorithm will converge to a fixed point of the objective. In practice,

convergence can be determined if subsequent iterations of HMRF-KMeans result

in insignificant changes in Jobj.

3.4 Active Learning for Constraint Acquisition

In the semi-supervised setting where training data is not already available, getting

constraints on pairs of data points may be expensive. In this section an active

learning scheme for the HMRF model is presented, which can improve clustering

performance with as few queries as possible. Formally, the scheme has access to a

(noiseless) oracle that can assign a must-link or cannot-link label on a given pair

(xi, xj), and it can pose a constant number of queries to the oracle.6

In order to get pairwise constraints that are more informative than random in

6. The oracle can also give a don’t-know response to a query, in which case that response
is ignored (pair not considered as a constraint) and that query is not posed again later.
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the HMRF model, an active learning scheme for selecting pairwise constraints using

the farthest-first traversal scheme is developed. In farthest-first traversal, a startingfarthest first

traversal point is first selected at random. Then, the next point farthest from it is chosen and

added to the traversed set. After that, the next point farthest from the traversed

set (using the standard notion of distance from a set: d(x, S) = minx′∈S d(x, x′))

is selected, and so on. Farthest-first traversal gives an efficient approximation of

the K-center problem [Hochbaum and Shmoys, 1985], and has also been used to

construct hierarchical clusterings with performance guarantees at each level of the

hierarchy [Dasgupta, 2002].

Basu et al. [2002] observed that initializing K-Means with centroids estimated

from a set of labeled examples for each cluster gives significant performance

improvements. Under certain generative model-based assumptions, one can con-good

initialization for

K-Means

nect the mixture of Gaussians model to K-Means with squared Euclidean dis-

tance [Kearns et al., 1997]. A direct calculation using Chernoff bounds shows that

if a particular cluster with an underlying Gaussian model is seeded with points

drawn independently at random from the corresponding Gaussian distribution, the

deviation of the centroid estimates falls exponentially with the number of seeds;

hence seeding results in good initial centroids. Since good initial centroids are very

critical for the success of greedy algorithms such as K-Means, the same principle

is followed for the pairwise case: the goal is to get as many points as possible per

cluster (proportional to the actual cluster size) by asking pairwise queries, so that

HMRF-KMeans is initialized from a very good set of centroids. The proposed

active learning scheme has two phases: Explore and Consolidate, which are

discussed next.Algorithm: ExploreInput: Set of data points X = (x1; : : : ; xn), a

ess to an ora
le thatanswers pairwise queries, number of 
lusters K, total numberof queries Q.Output: � � K disjoint neighborhoods N = (N1; : : : ; N�) 
orrespondingto the true 
lustering of X with at least one point per neighborhood.Method:1. Initialize: set all neighborhoods Np to null2. Pi
k the �rst point x at random, add to N1, � 13. While queries are allowed and � < Kx point farthest from existing neighborhoods Nif, by querying, it is found that x is 
annot-linked to allexisting neighborhoods� �+ 1, start a new neighborhood N� with xelseadd x to the neighborhood with whi
h it is must-linked
Figure 3.4 Algorithm Explore
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3.4.1 Exploration

The Explore phase explores the given data using farthest-first traversal to get K

pairwise disjoint non-null neighborhoods as fast as possible, with each neighborhood

belonging to a different cluster in the underlying clustering of the data. Note that

even if there is only one point per neighborhood, this neighborhood structure defines

a correct skeleton of the underlying clustering. Our algorithm Explore (Figure 3.4)form skeleton of

neighborhoods uses farthest-first traversal for getting a skeleton structure of the neighborhoods,

and terminates when it has run out of queries, or, when at least one point from

all the clusters has been labeled. In the latter case, active learning enters the

consolidation phase.

Algorithm: Consolidate

Input: Set of data points X = (x1, . . . , xn), access to an oracle that
answers pairwise queries, number of clusters K, total number
of queries Q, K disjoint neighborhoods corresponding to true
clustering of X with at least one point per neighborhood.

Output: K disjoint neighborhoods corresponding to the true
clustering of X with higher number of points per neighborhood.

Method:

1. Estimate centroids (µ1, . . . , µK) of each of the neighborhoods
2. While queries are allowed
2a. randomly pick a point x not in the existing neighborhoods
2b. sort the indices h with increasing distances ‖x − µh‖

2

2c. for h = 1 to K
query x with each of the neighborhoods in sorted order
till a must-link is obtained, add x to that neighborhood

Figure 3.5 Algorithm Consolidate

3.4.2 Consolidation

The basic idea in Consolidate (Figure 3.5) is as follows: since there is at least one

labeled point from all the clusters, the proper neighborhood of any unlabeled point

x can be determined within a maximum of (K − 1) queries. The queries will beconsolidate

neighborhoods formed by taking a point y from each of the neighborhoods in turn and asking for

the label on the pair (x, y) until a must-link is obtained. Either a must-link reply

is obtained in (K − 1) queries, or it can be inferred that the point is must-linked

to the remaining neighborhood. Note that it is practical to sort the neighborhoods

in increasing order of the distance of their centroids from x so that the correct

must-link neighborhood for x is encountered sooner in the querying process.

When the right number of clusters K is not known to the clustering algorithm,

K is also unknown to the active learning scheme. In this case, only Explore is

used while queries are allowed. Explore will keep discovering new clusters as fast
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as it can. When it has obtained all the clusters, it will not have any way of knowing

this. However, from this point onwards, for every farthest-first x it draws from the

dataset, it will always find a neighborhood that is must-linked to it. Hence, after

discovering all of the clusters, Explore will essentially consolidate the clusters too.

However, when K is known, it makes sense to invoke Consolidate since (1) it adds

points to clusters at a faster rate than Explore, and (2) it picks random samples

following the underlying data distribution, which is advantageous for estimating

good centroids (e.g., Chernoff bounds on the centroid estimates exist), while samples

obtained using farthest-first traversal may not have such properties.

3.5 Experimental Results

This section describes the experiments that were performed to demonstrate the

effectiveness of various aspects of HMRF-KMeans.

3.5.1 Datasets

Experiments were run on both low-dimensional and high-dimensional datasets to

evaluate the HMRF-KMeans framework with different distortion measures. For

the low-dimensional datasets, on which squared Euclidean distance was used as the

distortion measure, the following datasets were considered:

Three datasets from the UCI repository: Iris, Wine, and Ionosphere [Blake and

Merz, 1998];

The Protein dataset used by Xing et al. [2003] and Bar-Hillel et al. [2003];

Randomly sampled subsets from the Digits and Letters handwritten characterlow-dimensional

datasets recognition datasets, also from the UCI repository. For Digits and Letters, two sets

of three classes were chosen: {I, J, L} from Letters and {3, 8, 9} from Digits,

sampling 10% of the data points from the original datasets randomly. These classes

were chosen since they represent difficult visual discrimination problems.

Table 3.1 summarizes the properties of the low-dimensional datasets: the number

of instances, the number of dimensions, and the number of classes.

Table 3.1 Low-dimensional datasets used in experimental evaluation

Iris Wine Ionosphere Protein Letters Digits

Instances 150 178 351 116 227 317

Dimensions 4 13 34 20 16 16

Classes 3 3 2 6 3 3
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For the high-dimensional text data, 3 datasets that have the characteristics of

being sparse, high-dimensional, and having a small number of points compared to

the dimensionality of the space were considered. This is done for two reasons:

When clustering sparse high-dimensional data, e.g., text documents represented

using the vector space model, it is particularly difficult to cluster small datasets, as

observed by Dhillon and Guan [2003]. The purpose of performing experiments on

these subsets is to scale down the sizes of the datasets for computational reasons

but at the same time not scale down the difficulty of the tasks.

Clustering small number of sparse high-dimensional data points is a likely scenario

in realistic applications. For example, when clustering the search results in a web-

search engine like Viv́ısimo7, typically the number of webpages that are being

clustered is in the order of hundreds. However the dimensionality of the feature

space, corresponding to the number of unique words in all the webpages, is in

the order of thousands. Moreover, each webpage is sparse, since it contains only a

small number of all the possible words. On such datasets, clustering algorithms can

easily get stuck in local optima: in such cases it has been observed that there is

little relocation of documents between clusters for most initializations, which leads

to poor clustering quality after convergence of the algorithm [Dhillon and Guan,

2003]. Supervision in the form of pairwise constraints is most beneficial in such

cases and may significantly improve clustering quality.

Three datasets were derived from the 20-Newsgroups collection.8 This collec-high-dimensional

datasets tion has messages harvested from 20 different Usenet newsgroups, 1000 messages

from each newsgroup. From the original dataset, a reduced dataset was created by

taking a random subsample of 100 documents from each of the 20 newsgroups.

Three datasets were created by selecting 3 categories from the reduced collec-

tion. News-Similar-3 consists of 3 newsgroups on similar topics (comp.graphics,

comp.os.ms-windows, comp.windows.x) with significant overlap between clusters

due to cross-posting. News-Related-3 consists of 3 newsgroups on related top-

ics (talk.politics.misc, talk.politics.guns, and talk.politics.mideast).

News-Different-3 consists of articles posted in 3 newsgroups that cover different

topics (alt.atheism, rec.sport.baseball, sci.space) with well-separated clus-

ters. All the text datasets were converted to the vector-space model by tokenization,

stop-word removal, TF-IDF weighting, and removal of very high-frequency and low-

frequency words, following the methodology of Dhillon and Modha [2001].

Table 3.2 summarizes the properties of the high-dimensional datasets.

7. http://www.vivisimo.com
8. http://www.ai.mit.edu/people/jrennie/20Newsgroups
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Table 3.2 High-dimensional datasets used in experimental evaluation

News-Different-3 News-Related-3 News-Similar-3

Instances 300 300 300

Dimensions 3251 3225 1864

Classes 3 3 3

3.5.2 Clustering Evaluation

Normalized mutual information (NMI) was used as the clustering evaluation mea-

sure. NMI is an external clustering validation metric that estimates the quality of

the clustering with respect to a given underlying class labeling of the data: it mea-

sures how closely the clustering algorithm could reconstruct the underlying label

distribution in the data [Strehl et al., 2000]. If Ŷ is the random variable denoting

the cluster assignments of the points and Y is the random variable denoting the

underlying class labels on the points, then the NMI measure is defined as:

NMI =
I(Y ; Ŷ )

(H(Y ) + H(Ŷ ))/2
(3.31)

where I(X;Y ) = H(X) − H(X|Y ) is the mutual information between the random

variables X and Y , H(X) is the Shannon entropy of X, and H(X|Y ) is the

conditional entropy of X given Y [Cover and Thomas, 1991]. NMI effectively

measures the amount of statistical information shared by the random variables

representing the cluster assignments and the user-labeled class assignments of the

data points. Though various clustering evaluation measures have been used in the

literature, NMI and it’s variants have become popular lately among clustering

practitioners [Dom, 2001, Fern and Brodley, 2003, Meila, 2003].

3.5.3 Methodology

Learning curves were generated using two-fold cross-validation performed over 20

runs on each dataset. In every trial, 50% of the dataset was set aside as the

training fold. Every point on the learning curve corresponds to the number of

constraints on pairs of data points from the training fold. These constraints are

obtained by randomly selecting pairs of points from the training fold and creating

must-link or cannot-link constraints depending on whether the underlying classes

of the two points are same or different. Unit constraint costs W were used for all

constraints (original and inferred), since the datasets did not provide individual

weights for the constraints. The gradient step size η for learning the distortion

measure parameters and the Rayleigh prior width parameter s were set based on

pilot studies. The gradient step size was set to η = 100.0 for clustering with weighted

cosine distance dcosA
and η = 0.08 for weighted I divergence dIA

. The Rayleigh prior

width parameter was set to s = 1. In a real-life setting, the free parameters of the
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algorithm could be tuned using cross-validation with a hold-out set. The clustering

algorithm was run on the whole dataset, but NMI was calculated using points in

the test fold.

Sensitivity experiments were performed with HMRF-KMeans to study the

effectiveness of each component of the algorithm. The proposed HMRF-KMeans

algorithm was compared with three ablations, as well as with unsupervised K-Means

clustering. The following variants were compared for distortion measures dcosA
, dIA

and deucA
:sensitivity

experiments
KMeans-C-D-R is the complete HMRF-KMeans algorithm that incorporates

constraints in cluster assignments (C) as described in Section 3.3.6, includes dis-

tance learning (D) as described in Section 3.3.7, and also performs regularization

(R) using a Rayleigh prior as described in Section 3.3.2;

KMeans-C-D is the first ablation of HMRF-KMeans that includes all compo-

nents except for regularization of distortion measure parameters;

KMeans-C is an ablation of HMRF-KMeans that uses pairwise supervision

for initialization and cluster assignments, but does not perform distortion measure

learning;

KMeans is the unsupervised K-Means algorithm.

The goal of these experiments was to evaluate the utility of each component of

the HMRF framework and identify settings in which particular components are

beneficial.

3.5.4 Results and Discussion

Low-dimensional datasets: Figures 3.6-3.11 show learning curves for the ablation

experiments on the six low-dimensional datasets. Across all datasets, the overall

HMRF-KMeans approach without regularization (KMeans-C-D) outperforms

the constraints-only ablation and unsupervised KMeans. Since the performance

of KMeans-C-D-R is not substantially different from KMeans-C-D, it can be

concluded that regularization does not lead to performance improvements on low-

dimensional datasets. This can be explained by the fact that the number of

distortion measure parameters is small for low-dimensional domains while estimates

obtained from data do not have high variance, and therefore incorporating a prior

in the probabilistic model is not necessary.

For the Wine, Protein, and Digits-389 datasets, the difference between ablations

that utilize metric learning (KMeans-C-D-R and KMeans-C-D) and those that

do not (KMeans-C and KMeans) at the beginning of the learning curve indicates

that even in the absence of constraints, weighting features by their variance (essen-

tially using unsupervised Mahalanobis distance) improves clustering accuracy. For

the Wine dataset, additional constraints provide an insubstantial improvement in

cluster quality on this dataset, which shows that meaningful feature weights are

obtained from scaling by variance using just the unlabeled data.
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Some of the metric learning curves display a characteristic “dip”, where clustering

accuracy decreases as a few initial constraints are provided, but after a certain point

starts to increase and eventually rises above the initial point on the learning curve.

One possible explanation of this phenomenon is that metric parameters learned

using too few constraints are unreliable, and a significant number of constraints

is required by the metric learning mechanism to estimate parameters accurately.

Overall, when both constraints and distortion measure learning are utilized, the

unified approach benefits from the individual strengths of the two methods, as can

be seen from the KMeans-C-D results.

High-dimensional datasets: Figures 3.12, 3.14 and 3.16 present the results

for the ablation experiments where weighted cosine similarity dcosA
was used as the

distortion measure, while Figures 3.13, 3.15 and 3.17 summarize experiments where

weighted I divergence dIA
was used.

As the results demonstrate, the full HMRF-KMeans algorithm with regulariza-

tion (KMeans-C-D-R) outperforms the unsupervised K-Means baseline as well as

the ablated versions of the algorithm for both distortion measures dcosA
and dIA

.

As can be seen from results for zero pairwise constraints in Figs. 3.12-3.17, distor-

tion measure learning is beneficial even in the absence of any pairwise constraints,

since it allows capturing the relative importance of the different attributes in the

unsupervised data. In the absence of supervised data or when no constraints are

violated, distance learning attempts to minimize the objective function by adjust-

ing the weights given the distortion between the unsupervised datapoints and their

corresponding cluster representatives.

For high-dimensional datasets, regularization is clearly beneficial to performance,

as can be seen from the improved performance of KMeans-C-D-R over KMeans-

C-D on all datasets. This can be explained by the fact that the number of distortion

measure parameters is large for high-dimensional datasets, and therefore algorithm-

based estimates of parameters tend to be unreliable unless they incorporate a prior.

Overall, these results show that the HMRF-KMeans algorithm effectively in-

corporates labeled and unlabeled data in all its stages, each of which improves the

clustering quality.

3.6 Related Work

The problem of integrating limited supervision in clustering algorithms has been

studied by a number of authors in recent work. Early approaches to semi-supervised

clustering relied on incorporating penalties for violating constraints into the objec-

tive function, leading to algorithms that avoid clusterings in which constraints are

not satisfied. COP-KMeans is one such method where constraint violations are ex-

plicitly avoided in the assignment step of the K-Means algorithm [Wagstaff et al.,

2001, Wagstaff, 2002]. Another method proposed by Demiriz et al. [1999] utilizes

genetic algorithms to optimize an objective function that combines cluster com-

pactness and cluster purity and that decreases with constraint violations.
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In subsequent work, several approaches have been proposed that consider semi-

supervised clustering within a probabilistic framework. Segal et al. [2003] describe

a model for semi-supervised clustering with constraints that combines a binary

Markov network derived from pairwise protein interaction data and a Naive Bayes

Markov network modeling gene expression data. Another probabilistic approach

described by Shental et al. [2004] incorporates must-link constraints via modeling

them as chunklets, sets of points known to belong to the same class, while cannot-

link constraints are utilized via potentials in a binary Markov network. HMRFs

have previously been used for image segmentation by Zhang et al. [2001], who

have also described an EM-based clustering algorithm. More recently, Lange et al.

[2005] proposed an approach that incorporates labeled and unlabeled data within an

HMRF-like model, while a mean field approximation method for posterior inference

is used in the E-step of the algorithm. The HMRF framework described in this

chapter differs from these approaches in that it explicitly incorporates learning of

the distortion measure parameters within the clustering algorithm and facilitates

the use of diverse distance measures; however, a number of the proposed methods

could be integrated within the HMRF framework.

Spectral clustering methods—algorithms that perform clustering by decompos-

ing the pairwise affinity matrix derived from data—have been increasingly popular

recently [Weiss, 1999, Ng et al., 2002], and several semi-supervised approaches have

been developed within the spectral clustering framework. Kamvar et al. [2003] have

proposed directly injecting the constraints into the affinity matrix before subse-

quent clustering, while De Bie et al. [2004] reformulated the optimization problem

corresponding to spectral clustering by incorporating a separate label constraint

matrix. Additionally, spectral clustering methods can be viewed as variants of the

graph-cut approaches to clustering [Shi and Malik, 2000], a connection that mo-

tivated the correlation clustering method proposed by [Bansal et al., 2004], where

the constraints correspond to edge labels between vertices representing datapoints.

Another family of semi-supervised clustering methods has focused on modifying

the distance function employed by the clustering algorithm. In early work, Cohn

et al. [2003] proposed using a weighted variant of Jensen-Shannon divergence within

the EM clustering algorithm, with the weights learned using gradient descent based

on constraint violations. Within the family of hierarchical agglomerative clustering

algorithms, Klein et al. [2002] proposed modifying the squared Euclidean distance

using the shortest-path algorithm. Several researchers have proposed methods for

learning the parameters of the weighted Mahalanobis distance, a generalization of

Euclidean distance, within the context of semi-supervised clustering. Xing et al.

[2003] utilized convex optimization and iterative projections to learn the weight

matrix of Mahalanobis distance within K-Means clustering. Another approach fo-

cused on parameterized Mahalanobis distance is the Relevant Component Analysis

(RCA) algorithm proposed by Bar-Hillel et al. [2003], where convex optimization

is also used to learn the weight matrix.

Learning distance metrics within semi-supervised clustering relates to a large set

of approaches for transforming the data representation to make it more suitable
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to a particular learning task. Within this volume, chapters 14-16 describe several

advanced techniques for changing the geometry of the data space to obtain better

estimates of similarity between data points; integrating these methods with clus-

tering algorithms provides a number of promising avenues for future work.

3.7 Conclusions

In this chapter, a generative probabilistic framework for semi-supervised clustering

has been introduced. It relies on Hidden Random Markov Fields (HMRFs) to utilize

both unlabeled data and supervision in the form of pairwise constraints during

the clustering process. The framework can be used with a number of distortion

(distance) measures, including Bregman divergences and directional measures, and

it facilitates training the distance parameters to adapt to specific datasets.

An algorithm HMRF-KMeans for performing clustering in this framework

has been presented that incorporates pairwise supervision in different stages of

the clustering: initialization, cluster assignment, and parameter estimation. Three

particular instantiations of the algorithm, based on different distortion measures,

have been discussed: squared Euclidean distance, which is common for clustering

low-dimensional data, and KL divergence and cosine distance, which are popular

for clustering high-dimensional directional data. Finally, a new method has been

presented for acquiring supervision from a user in the form of effective pairwise

constraints for semi-supervised clustering – such an active learning algorithm would

be useful in an interactive query-driven clustering framework.

The HMRF model can be viewed as a unification of constrained-based and

distance-based semi-supervised clustering approaches. It can be expanded to a

more general setting where every cluster has a corresponding distinct distortion

measure [Bilenko et al., 2004], leading to a clustering algorithm that can identify

clusters of different shapes. Empirical evaluation of the framework described in this

chapter can be found in several previous publications: active learning experiments

are discussed in [Basu et al., 2004a], while [Bilenko et al., 2004] and [Basu

et al., 2004b] contain results for low-dimensional and high-dimensional datasets

respectively, and [Bilenko and Basu, 2004] compares several approximate inference

methods for E-Step discussed in Section 3.3.6.

An important practical issue in using generative models for SSL is model se-

lection. For semi-supervised clustering with constraints, the key model selection

issue is one of choosing the right number of clusters. One can consider using a

traditional model selection criterion suitable for the supervised setting, or perform

model selection by cross-validation. An alternative is to perform model-selection

using bounds on the test-set error-rate such that valuable supervised data is saved

for learning. The PAC-MDL bounds [Blum and Langford, 2003] provide such a tool

that has been successfully applied to model selection for clustering [Banerjee et al.,

2005a], and can be readily extended to the semi-supervised clustering setting. In

fact, the semi-supervised clustering setting is more natural since PAC-MDL bounds
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are applicable for transductive learning. Alternative methods of model selection are

a good topic for future research.
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